A série é composta por artigos, publicados em periódicos e congressos, resumos, relatórios tecnicos, relatório de pesquisa, etc.
Sin títuloA coleção é composta pelo processo de vida funcional onde constam documentos relativos aos trâmites administrativos e às atividades docentes desde a sua admissão ao seu desligamento, em que se destacam, além de artigos publicados, resumos de artigos apresentados em congressos nacionais e internacionais e certificados de participação em eventos científicos, memorial, plano de trabalho, plano de pesquisa, curriculum vitae e os relatórios de atividades docentes.
Sin títuloDe acordo com o autor: "We show this paper that the process of realizing types for semantic structures is essenciatially the same process of Cauchy completeness of an associated psedometric space."
Sin títuloSegundo o abstract do artigo: "In this paper we adapt the method of Fraissé (c.f [Fr]) to the construction of limits of Cauchy sequences of structures for the logical Lrww (Q) where r is a finite type of similarity, and Q is a co-filter quantifier"
Sin títuloDe acordo com o abstract do próprio autor: "In this papaer we extend the usual notion of model (as an structure) to the more general notion of Cauchy Sequence of structures in a similar eay as rational are extending to real number by means of Cauchy Sequence of Rationals. We show that the structure space Str is dense in the complete space CStr of Cauchy sequence of structures and that CStr is compact in the (topo) logical sense."
Sin títuloNo abstract do artigo consta: "Let r be a finite relational type. The space Str(r) of all structures of type r is naturally equipped with a pseudometric, by saying that the distance of two structures is equal to 1/(1+r) iff a sentence of quantifier rank r can separate the two structures, with r minimal. In this self-contained paper, we give a simple prrof of the convergence of every Cauchy sequence structures of type r. The compactness of Str (r) now follows from an elementary topological argument."
Sin títuloSegundo o resumo do autor: 'In this paper we study the elementary equivalence between sheaves of strctures, of finite type r, over a topological space X."
Sin títuloIn this paper we are concerned with the notion of language and its relation to category theory. Our motivations has been Farisse's treatment of formulas as operators. We show that the formulas of first order language with finitely many predicates can be (naturally) characterized as class of functiors from one category to another.
Sin títuloLe but de cette Note est d'étabilir um theoreme de representation pour les catégories EF1 (L).
Sin título